Géron, Aurélien
Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow concepts, tools, and techniques to build intelligent systems
Buch

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.

By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurelien Geron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.

Explore the machine learning landscape, particularly neural nets
Use Scikit-Learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
Learn techniques for training and scaling deep neural nets


Dieses Medium ist voraussichtlich bis zum 13.01.2025 ausgeliehen. Gerne können Sie es vormerken.

Weiterführende Informationen


Personen: Géron, Aurélien

Schlagwörter: Datenanalyse künstliche Intelligenz maschinelles Lernen Machine Learning Python

QH 500 G377-01 (2)

Géron, Aurélien:
Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems / Aurélien Géron. - Second edition. - Beijing ; Boston ; Fanham ; Sebastopol ; Tokyo : O'Reilly, 2019. - xxv, 819 Seiten : Illustrationen. - Hier auch später erschienene, unveränderte Nachdrucke
ISBN 978-1-4920-3264-9

Zugangsnummer: 2021/0192 - Barcode: 2-9394144-8-00017032-1
Mathematik. Statistik. Ökonometrie. Unternehmensforschung - Buch